# REDOX REACTIONS INVOLVING MOLYBDENUM, TUNGSTEN AND URANIUM HEXAFLUORIDES IN ACETONITRILE

GERARD M. ANDERSON, JAVED IOBAL, DAVID W.A. SHARP, JOHN M. WINFIELD \* and (in part) JAMES H. CAMERON and ALASDAIR G. McLEOD

Department of Chemistry, University of Glasgow Glasgow G12 800 (U.K.)

#### SUMMARY

The redox properties of molybdenum, tungsten and uranium hexafluorides in acetonitrile at 298 K have been compared with other redox couples using cyclic voltammetry, and by carrying out appropriate redox reactions under carefully controlled conditions. The order of oxidizing ability established is  $\text{UF}_6 > \text{MoF}_6 > \text{NO}^+ > \text{solvated Cu}^{2+} \gg \text{WF}_6$ . The position of the solvated Tl<sup>3+</sup> cation probably lies between MoF<sub>6</sub> and Cu<sup>2+</sup> Reactions which occur in the Cu metal / solvated Cu<sup>n+</sup> (n = 1 or 2)/WF<sub>6</sub> system are accounted for by redox and fluoride-ion-transfer equilibria.

### INTRODUCTION

The oxidizing abilities of molybdenum tungsten and uranium hexafluorides have attracted considerable attention. Their electron affinities have been determined by various methods, for example ion cyclotron resonance spectroscopy [1], molecular-beam reactions with alkali metals [2], thermochemistry of hexafluorometallate (V) salts [3], and effusion mass spectrometry [4]. Although there is some disagreement as to their precise values, particularly for MoF<sub>6</sub>, most data indicate that the order of electron affinities is UF<sub>6</sub> > MoF<sub>6</sub> > WF<sub>6</sub>. This order is also indicated by the electronic spectra of the hexafluorides' charge transfer complexes [5], and is consistent with their gas-phase redox chemistry [6].

0022-1139/84/\$3.00

© Elsevier Sequoia/Printed in The Netherlands

The redox couples  $MF_6/MF_6$ , M = Mo and W, have been identified in anhydrous hydrogen fluoride [7] and in acetonitrile [8] by cyclic voltammetry. In both solvents  $MoF_6$  is the stronger oxidant, the difference in half-wave potentials,  $E_{1_2}$  V, being <u>ca</u>. 1 V. The oxidation of several metals by  $MoF_6$ ,  $WF_6$ , or  $UF_6$  in MeCN was reported several years ago [9], but detailed comparisons among their oxidizing abilities and those of other redox couples in MeCN could not be made. This has now been accomplished by a combination of cyclic voltammetry and the study of selected redox reactions under defined conditions.

## RESULTS AND DISCUSSION

### Cyclic voltammetry

Cyclic voltammetry of hexafluorometallate(V) and heptafluorotungstate(VI) salts in purified acetonitrile was performed using the evacuable, Pyrex cell shown in Figure 1.

The cell consists of three sections, made from 24 and 15-10 mm dia. tubing, and joined by B.14 and B.19 greaseless 'O'-ring joints. Connections to vacuum and to storage ampoules for reference, bridging, and working electrolytes, and for the solvent are by P.T.F.E., Pyrex stop-cocks. The working, reference, and bridge compartments of the cell are connected using unfired 'Vycor' tips joined to glass (4 mm dia.) by heat shrunk P.T.F.E. tubing. The reference electrode is Ag°/Ag<sup>+</sup> (0.1 mol dm $^{-3}$  in MeCN) and both working and auxiliary electrodes are Pt wire (1.0 mm dia.). The wires are vacuum sealed by spot welding them to tungsten wire and sheathing the assembly in uranium glass. Solutions for cyclic voltammetry are prepared as follows. The degassed cell is transferred to an argon atmosphere glove box and the storage ampoules loaded with silver nitrate solution (2 cm<sup>3</sup>, 0.1 mol dm<sup>-3</sup> in MeCN). tetraethylammonium tetrafluoroborate solution (2 cm<sup>3</sup> and 8 cm<sup>3</sup>, 0.1 mol  ${
m dm}^{-3}$  in MeCN respectively, for bridging and working compartments), and the solute, which is contained in a frangible ampoule. The apparatus is re-evacuated, and the solutions degassed and tipped into their respective compartments. After determining the working potential range of the Et<sub>4</sub>NBF<sub>4</sub>, MeCN solution, the frangible ampoule is broken and the solute dissolved. Solutions so prepared can be studied over a period of hours before hydrolysis is detectable.



Fig. 1. Evacuable cell for cyclic voltammetry

The cyclic voltammogram of ferrocene  $(10^{-3} \text{ mol dm}^{-3} \text{ in } 0.1 \text{ mol dm}^{-3}$ Et<sub>4</sub>NBF<sub>4</sub>, MeCN solution) recorded using this cell coupled to a potentiostat (CV-1A, Bioanalytical Systems Inc.) and XY recorder, consists of a quasi-reversible wave. The half-wave potential, E<sub>1</sub>, is +0.07 V vs. Ag<sup>+</sup> (0.1 mol dm<sup>-3</sup>)/Ag°, the peak-to-peak separation,  $\Delta$ Ep, being 0.10 V at a scan rate 0.10 V s<sup>-1</sup>. Decreasing the scan rate produces a smaller peak-to-peak separation.

NOPF<sub>6</sub>, studied under identical conditions, gives rise to a quasireversible wave which is assigned to the couple NO<sup>+</sup>/NO,  $E_{\chi} = +0.87 \text{ V}$ and  $\Delta \text{Ep} = 0.27 \text{ V}$ . The lack of complete reversibility in this case may be a consequence of a change in geometry between the oxidized and reduced forms as the NO<sup>+</sup> cation appears to be very effectively solvated by MeCN [10]. The results of cyclic voltammetry of hexafluorometallates(V),  $MF_6$ , M = U, Mo, and W, and heptafluorotungstates(VI), obtained under identical conditions, are given in Table 1. Assignments of the couples  $MF_6/MF_6^$ and  $MF_6^-/M^{IV}$ , M = Mo or W, were made by comparisons with previous studies of alkali metal and silver(I) salts [8].  $Cu^{II}/Cu^{I}$  couples were assigned by comparisons with data obtained from their  $PF_6^-$  salts [11]. In all cases the agreement between  $E_{l_2}$  values is satisfactory, but peak-to-peak separations are somewhat greater than in previous work possibly due to the presence of more than one electroactive species in solution. Broad waves are particularly evident in solutions containing  $WF_6^-$  and  $WF_7^-$  anions. It is possible that the  $WF_7^-/W^V$  couple is not even quasi-reversible in MeCN. However, what is evident is a marked decrease in the oxidizing ability of  $W^{VI}$  by the addition of a  $F^$ anion to  $WF_c$ .

The waves assigned to the  $UF_6/UF_6$  couple are very distorted,  $\Delta Ep = 0.44 - 0.49 V$ , and occur close to the solvent limit.  $UF_6$  is known to undergo a slow reduction in MeCN [9], therefore the lack of reversibility is not unexpected. However, the data do imply that  $UF_6$  is that strongest one-electron oxidant of those examined.

Waves assignable to the  $Tl^{III}/Tl^{I}$  couple could not be observed in solutions of  $Tl^{I}$  fluoro-anion salts and the wave,  $E_{\frac{1}{2}} = +0.45$  V, tentatively assigned to  $Tl^{III}/Tl^{I}$  in  $Tl^{III}$  hexafluoromolybdate(V) solutions was broad,  $\Delta Ep = 0.30$  V, and ill-defined.

# Redox reactions between $NO^+$ and $Cu^I$ hexafluorometallates(V)

The oxidation of Cu metal to Cu<sup>II</sup> in MeCN by the NO<sup>+</sup> cation has been reported previously [12]. The E<sub>1</sub> data, Table 1, indicate that this is to be expected, and that  $WF_6^-$ , but not  $MoF_6^-$ , should be oxidized. The reverse behaviour, reduction of MoF<sub>6</sub> but not  $WF_6^-$  by NO, has been shown to occur in the gas phase [6]. Spectrophotometric titrations at 298 K in MeCN, Table 2, demonstrate the oxidation  $Cu^I + Cu^{II}$  by NO<sup>+</sup> in three hexafluoroanion salts. The behaviour with PF<sub>6</sub> or MoF<sub>6</sub> as counter anion is almost identical, but the extent of  $Cu^{II}$  formation at comparable initial  $(NO^+) : [Cu^I]$ ratios when  $WF_6^-$  is the counter anion is smaller, due to the oxidation  $WF_6^- + WF_6$ . The Raman spectrum of a solution in which the initial ratio  $[Cu^I] : [NO^+] : [WF_6^-] = 1 : 1 : 1$  shows the presence of  $WF_6^-$  but not  $WF_6^-$  nor  $WF_7^-$ , suggesting that oxidation of  $WF_6^-$  is complete. Under these conditions only 12% of the Cu<sup>I</sup> originally present is oxidized, Table 2.

|                                                                          | KEDUX   | 374000      |                                     |             |             |                                    |        |        |              |
|--------------------------------------------------------------------------|---------|-------------|-------------------------------------|-------------|-------------|------------------------------------|--------|--------|--------------|
| Solute +                                                                 | UF6/UF6 | MOF 6/MOF 6 | cu <sup>II</sup><br>cu <sup>I</sup> | WF6/<br>WF6 | MOF<br>MoIV | Cu <sup>I</sup><br>Cu <sup>o</sup> | T1/T1° | WF7/W  | WF_6/<br>MIV |
| Cu <sup>II</sup> (UF) 5MeCN                                              | +2.31   |             | +0.70                               |             |             | -0.71                              |        |        |              |
| 6,2                                                                      | (0,44)  |             | (0.11)                              |             |             |                                    |        |        |              |
| $\mathrm{Tl}^{11}$ (UF <sub>6</sub> ) $_{3}$ 4MeCN                       | +2.33   |             |                                     |             |             |                                    | -1.06  |        |              |
| TI (MOF, ), 5MeCN                                                        | (0°49)  | +1.60       |                                     |             | -0.34       |                                    | -1.15  |        |              |
| . 6.3                                                                    |         | (0.15)      |                                     |             | (0.18)      |                                    |        |        |              |
| Cu <sup>11</sup> (MoF <sub>6</sub> ) <sub>3</sub> 5MeCN                  |         | +1.65       | +0.71                               |             | -0.36       | -0°10                              |        |        |              |
| 7 O F                                                                    |         | (0.08)      | (0.10)                              |             | (0.10)      |                                    |        |        |              |
| Cu <sup>±</sup> (MoF <sub>6</sub> ) 4MeCN                                |         | +1.60       | +0.75                               |             | -0.35       | -0.73                              |        |        |              |
| L WF AMACN                                                               |         | (01.0)      | (0.10)<br>+0.74                     | +0.51       | (02.0)      | -0.68                              |        |        | -1.50        |
| <sup>9</sup>                                                             |         |             | (0.20)                              | (0.22)      |             | •                                  |        |        | (0,20)       |
| Cu <sup>LL</sup> (WF_),5MeCN                                             |         |             | +0.69                               | ,           |             | -0.72                              |        | -1.27  |              |
| 7 1                                                                      |         |             | (0.23)                              |             |             |                                    |        | (0.20) |              |
| (Bu <sup>n</sup> , N <sup>†</sup> ) (WF <sup>°</sup> , WF <sup>¬</sup> ) |         |             |                                     | +0.51       |             |                                    |        | -1.26  | -1.52        |
| + + 0 /                                                                  |         |             |                                     | (0.22)      |             |                                    |        | (0.25) | (0.15)       |
| $TI^{+WF_{7}}$                                                           |         |             |                                     |             |             |                                    | -0.93  | -1.22  |              |
| -                                                                        |         |             |                                     |             |             |                                    |        | (0.20) |              |
|                                                                          |         |             |                                     |             |             |                                    |        |        |              |

Half-wave **poten**tials, E<sub>L</sub> V vs. Ag<sup>+</sup> (0.1 mol dm<sup>-3</sup>)/Ag° in MeCN\*

TABLE 1

\* Peak-to-peak separations in parentheses.

 $+ 10^{-2} \sim 10^{-3} \text{ mol dm}^{-3}$ 

Redox chemistry derived from copper metal, metal hexafluoride reacti in MeCN

The E<sub>2</sub> data in Table 1 indicate that both MoF<sub>6</sub> and UF<sub>6</sub> are capable of oxidizing Cu metal to Cu<sup>II</sup> in MeCN, and that Cu<sup>I</sup> and Mo<sup>IV</sup> are accessible by reduction with Cu metal. With one exception, this is in keeping with synthetic experience. Cu<sup>II</sup> and Cu<sup>I</sup> hexafluoromolybdates (V) and hexafluorouranates (V) have been prepared by this means [9], the only additional consideration being that in the reduction of Cu<sup>II</sup> hexafluorouranate (V), a fresh Cu metal surface is required [13]. Although the reduction of Cu<sup>II</sup> to Cu<sup>I</sup> in the hexafluoromolybdate (V) by Cu metal is rapid and exothermic in MeCN at 298 K, the half-life for a reaction in which [Cu<sup>II</sup>] was initially 0.024 mol dm<sup>-3</sup> is ca. 30 min, reduction of MoF<sub>6</sub> to MoF<sub>6</sub><sup>2-</sup> by Cu metal was not observed. Yellow Cu<sup>I</sup> (MoF<sub>6</sub>), 4MeCN was the only product isolated. MoF<sub>6</sub><sup>2-</sup> salts of some alkali metal cations have been isolated by reduction of MoF<sub>6</sub> with iodide anion in sulphur dioxide however [14].

TABLE 2

Oxidation of Cu<sup>I</sup> hexafluoroanion salts by NO<sup>+</sup> in MeCN at 298 K

| 10 <sup>2</sup> Con | centratio          | on (mol dm <sup>-3</sup> ) | Ratio                                               |
|---------------------|--------------------|----------------------------|-----------------------------------------------------|
| [Cu <sup>I</sup> ]  | [N0 <sup>+</sup> ] | [Cu <sup>II</sup> ] *      | [Cu <sup>II</sup> ]/[Cu <sup>I</sup> ] <sub>0</sub> |
| (a) Cu <sup>I</sup> | hexafluc           | prophosphate               |                                                     |
| 3.8                 | 3.8                | 2.3                        | 0.61                                                |
| 3.8                 | 7.6                | 3.3                        | 0.87                                                |
| 3.8                 | 9.4                | 3.4                        | 0.89                                                |
| (b) Cu <sup>I</sup> | hexafluc           | romolybdate(V)             |                                                     |
| 3.8                 | 1.2                | 1.0                        | 0.26                                                |
| 3.8                 | 4.0                | 3.0                        | 0.79                                                |
| 3.8                 | 8.9                | 3.3                        | 0.87                                                |
| (c) Cu <sup>I</sup> | hexafluc           | orotungstate(V)            |                                                     |
| 4.2                 | 4.3                | 0.5                        | 0.12                                                |
| 2.5                 | 4.0                | 1.3                        | 0.52                                                |
| 2.4                 | 4.9                | 2.0                        | 0.83                                                |
| 3.0                 | 7.5                | 2.4                        | 0.80                                                |
|                     |                    |                            |                                                     |

Determined spectrophotometrically after 15 min.

Analogous chemistry involving WF<sub>6</sub> is more complicated for two reasons, the similar values of the Cu<sup>II</sup>/Cu<sup>I</sup> and WF<sub>6</sub>/WF<sub>6</sub> potentials, Table 1, and the ease with which WF<sub>6</sub> reacts with WF<sub>6</sub> in MeCN to give WF<sub>7</sub> [10,15]. Although Cu(NCMe)<sup>2+</sup><sub>6</sub>, WF<sub>6</sub>, and WF<sub>7</sub> can all be identified in solution from reactions of Cu metal with WF<sub>6</sub> in MeCN depending on the conditions used, the only solid compound isolable in a pure state is  $[Cu<sup>I</sup>(NCMe)_4][WF_6], \underline{cf}$ . ref. [9]. It has been proposed in the preliminary communication [16] that this behaviour is due to the redox, equation 1, and F<sup>-</sup> ion transfer, equation 2, equilibria in which all species are solvated by MeCN.

$$Cu^{+} + WF_{6} \xrightarrow{K_{1}} Cu^{2+} + WF_{6}^{-}$$
(1)

$$WF_6^- + WF_6 \xrightarrow{K_2} WF_7^- + WF_5$$
 (2)

The redox equilibrium (1) is temperature dependent,  $Cu^{2+}$  being favoured at 230 K [16]. Equilibrium (2) is important when WF<sub>6</sub> is reduced by iodide ion, as the tetra-<u>n</u>-butylammonium salt, in MeCN. The products are I<sub>2</sub> and a mixture of WF<sub>6</sub> and WF<sub>7</sub> salts. This is in contrast to the situation in SO<sub>2</sub>, from which alkali metal hexafluorotungstates(V) have been prepared in a pure state [17]. In the analogous reaction involving MoF<sub>6</sub> in MeCN, further oxidation of I<sub>2</sub> occurs to give [I(NCMe)<sub>2</sub>][MoF<sub>6</sub>] [18] and there is no evidence for heptafluoromolybdate(VI) formation.

The species  $Cu(NCMe)_{6}^{2+}$ ,  $WF_{6}^{-}$ ,  $WF_{7}^{-}$ , and  $WF_{6}$  are unambiguously identified in solution by electronic or Raman spectroscopy, but identification of solvated  $WF_{5}$ , presumably  $WF_{5}$ , NCMe, is more problematic. A Raman active band at 755 cm<sup>-1</sup> has been assigned to this species [10], and is observed, in company with  $WF_{7}^{-}$ , in this work. When a large excess of  $WF_{6}$  is present the band shifts to 722 cm<sup>-1</sup>.

The species in solution, identified by Raman spectroscopy, from redox reactions at 298 K between  $WF_6$  and  $Cu^{II}$ , and between  $Cu^{I}$ , counterions  $PF_6$  or  $WF_6$ , and  $WF_6$ , are given in Tables 3 and 4. Raman spectra obtained from the reaction of copper(I) hexafluorotungstate(V),  $[Cu^{I}] = 0.106 \text{ mol } dm^{-3}$ , with  $WF_6$ ,  $[WF_6] = 0.21 \text{ mol } dm^{-3}$ , are shown in Figure 2.

TABLE 3

| Initial concen      | tration mol $dm^{-3}$        | Speci           | .es identi   | fied            |
|---------------------|------------------------------|-----------------|--------------|-----------------|
| [WF <sub>6</sub> ]* | [Cu <sup>II</sup> ] <b>†</b> | wf <sub>6</sub> | WF7          | WF <sub>6</sub> |
| 0.05                | 0.133                        | -               | _            | V               |
| 0.10                | 0.133                        | -               | $\checkmark$ | ~               |
| 0.12                | 0.133                        | レ               | $\checkmark$ | $\checkmark$    |
|                     |                              |                 | -            | -               |

Oxidation of  $WF_6^-$  by  $Cu^{II}$  in MeCN at 298 K. Species identified by Raman spectroscopy

\* As the  $Cu^{I}$  salt; <sup>†</sup> counter anion  $PF_{6}^{-}$ 

The oxidation of  $Cu^{I}$  by  $WF_{6}$  in MeCN at 298 K is conveniently followed by monitoring the solution's electronic spectrum after each  $WF_{6}$  addition, and the latter part of one such experiment is shown in Figure 3. Addition of  $WF_{6}$  to  $Cu^{I}$  hexafluorophosphate in MeCN, initial  $[Cu^{I}] = 0.112 \text{ mol } dm^{-3}$ , results in the formation of  $Cu^{II}$ . The maximum  $[Cu^{II}]$  observed is 0.064 mol  $dm^{-3}$  which is approximately 57% of that theoretically attainable and requires a large excess of  $WF_{6}$ , mole ratio  $Cu^{I} : WF_{6} \tilde{-}$  1:13. Removal of all volatile material leaves a mixture in which  $Cu^{II} : Cu^{I} = 1:4$ . Similar behaviour is observed using  $Cu^{I}$ hexafluorotungstate(V). For example, the maximum concentration of  $Cu^{II}$  observed in a mixture for which  $[Cu^{I}]$  was initially 0.100 mol  $dm^{-3}$ , is 0.054 mol  $dm^{-3}$  and occurs at  $Cu^{I} : WF_{6} \tilde{-}$  1:18. The greater mole ratio required is a reflection of the additional  $WF_{6}$  concentration in the latter case. The solid isolated from this reaction has  $Cu^{II} : Cu^{I} = 1:9$ .

The electronic spectra of both systems contain a broad, weak band,  $v_{max} = 25,000 \text{ cm}^{-1} (PF_6^- \text{ salt}), 26,300 \text{ cm}^{-1} (WF_6^- \text{ salt})$  which is distinct from absorptions due to  $WF_6^-$ ,  $v_{max} = 27,800$  ( $\xi = 7$ ), 20,000 cm<sup>-1</sup> ( $\xi = 1.5$ ) in the spectrum of Cu<sup>I</sup> hexafluorotungstate(V). The band intensity increases as [WF<sub>6</sub>] increases, Figure 3, and is tentatively assigned to solvated WF<sub>c</sub>.

TABLE 4

Oxidation of  $Cu^{I}$  by WF in MeCN at 298 K. Species identified by Raman spectroscopy

| Initial                     | concentration, mol, dm                                                                                                                                                                             | SE                | ecies i                    | dentifi           | ed              |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|-------------------|-----------------|
| [Cu <sup>I</sup> ] <i>o</i> | <sup>[WF</sup> 6 <sup>]</sup> 0                                                                                                                                                                    | WF <sub>6</sub>   | WF <sub>7</sub>            | WF <sub>6</sub>   | 'WF_'           |
| (a) Cu <sup>I</sup>         | hexafluorophosphate + W                                                                                                                                                                            | F <sub>6</sub>    |                            |                   |                 |
| 0.106                       | 0.02                                                                                                                                                                                               | -                 | ~                          | -                 | -               |
| 0.106                       | 0.05                                                                                                                                                                                               | -                 | u                          | -                 | obscured        |
| 0.106                       | 0.07                                                                                                                                                                                               | -                 | V                          | V                 | by              |
| 0.106                       | 0.18*                                                                                                                                                                                              | -                 | $\scriptstyle  u$          | $\scriptstyle  u$ | PF <sub>6</sub> |
| (b) Cu <sup>I</sup>         | hexafluorotungstate(V)                                                                                                                                                                             | + WF <sub>6</sub> |                            |                   |                 |
| 0.110                       | 0.02                                                                                                                                                                                               | $\checkmark$      | $\checkmark$               | -                 | V               |
| 0.110                       | 0.05                                                                                                                                                                                               | V                 | $\checkmark$               | V                 | レ               |
| 0.110                       | 0.075                                                                                                                                                                                              | V                 | $\checkmark$               | V                 | $\checkmark$    |
| 0.106                       | 0.21                                                                                                                                                                                               | -                 | V                          | V                 | $\checkmark$    |
| 0.106                       | 0.59                                                                                                                                                                                               | -                 | $\checkmark$               | V                 | $\checkmark$    |
| 0.106                       | 0.64                                                                                                                                                                                               | -                 | V                          | V                 | V               |
| * Solid                     | isolated from this mixt                                                                                                                                                                            | ure cont          | ained W                    | F, but            | no WF_          |
| + Solid                     | isolated from this mixt                                                                                                                                                                            | ure cont          | ained W                    | F and             | WF              |
| 5, (WFa)                    | $\frac{\nabla_{1}(WF_{5}^{-})}{\nabla_{2}(WF_{6})} (b)$ $\frac{\nabla_{2}(WF_{6})}{100} (b)$ $\frac{1}{750} \frac{700}{700} \frac{650}{650}$ $\frac{1}{\sqrt{100}} (a)$ $\frac{1}{\sqrt{100}} (a)$ | Managene          | (c)<br>→(WF <del>,</del> ) |                   | )               |
| 800 7                       | 750 700 -1 650                                                                                                                                                                                     | 800 7             | 50 70                      | 00 6              | 50              |

Fig. 2. Raman spectra of  $Cu^{I}$  hexafluorotungstate(V)(0.106 mol dm<sup>-3</sup>) + WF<sub>6</sub> (0.21 mol dm<sup>-3</sup>) in MeCN; (a) before addition of WF<sub>6</sub>, (b) reaction mixture, (c) solid isolated from solution.

Evaluation of the equilibrium constants for equations 1 and 2,  $K_1$  and  $K_2$ , was not possible as only [Cu<sup>II</sup>] could be determined and even these measurements are biased when the volume of WF<sub>6</sub> present becomes significant. However, the results obtained indicate that  $K_2 > K_1$ . A small value for the latter is expected in view of the order of  $E_1$  values found, Table 1.



Fig. 3. Electronic spectra of  $Cu^{I}$  hexafluorophosphate (initial  $[Cu^{I}]$ = 0.112 mol dm<sup>-3</sup>) + WF<sub>6</sub> (1.33 to 5.60 mmol) reaction mixtures.

# Oxidation of thallium metal by MoF<sub>6</sub> or UF<sub>6</sub>. Properties of $\underline{\text{T1}^{\text{III}}/\text{MoF}_6}_3, \underline{\text{5MeCn.}}$

Oxidation of Tl metal by MoF<sub>6</sub> in MeCN at 298 K results in a pale green solution,  $v_{max} = 15,600 \text{ cm}^{-1}$ , which rapidly becomes dark green-blue. The electronic spectral band is not observed in MoF<sub>6</sub>, MeCN solutions, therefore it must originate from charge transfer involving MoF<sub>6</sub> and/or a thallium species. A pure Tl<sup>III</sup> salt, colourless Tl<sup>III</sup> (MoF<sub>6</sub>)<sub>3</sub>, 5MeCN [9], is isolated only if the mole ratio MoF<sub>6</sub> : Tl° is high, and if the concentration of MoF<sub>6</sub> is > <u>ca</u>. 1 mol dm<sup>-3</sup>. If these conditions are not met, yellow solids are formed in which Tl : Mo = ca. 1:2, Table 5.

| Tl metal | Mof <sub>6</sub> | [MOF <sub>6</sub> ] <b>o</b> | Product |    |   |      |
|----------|------------------|------------------------------|---------|----|---|------|
| mmol     | mmol             | mol dm <sup>-3</sup>         | Colour  | Tl | : | Мо   |
| 0.49     | 4.7              | 0.94                         | white   | 1  | : | 3.0  |
| 1.88     | 10.7             | 2.14                         | white   | 1  | : | 2,9  |
| 1.53     | 5.4              | 1.08                         | yellow  | 1  | : | 2.2  |
| 0.98     | 1.4              | 0.06                         | yellow  | 1  | : | 2.0* |

TABLE 5 Oxidation of T1 metal by MoF<sub>c</sub> in MeCN

\* Unreacted T1 metal present.

The yellow solids are spectroscopically identical to  $TI^{III}(MOF_c)_{2}$ , 5MeCN, except that the absorption edge in their electronic spectra occurs at lower energy. They are oxidized by MoF<sub>6</sub> in MeCN to the Tl<sup>III</sup> salt and appear to react slowly with Tl metal, unlike  $\text{Tl}^{\text{III}}(\text{MoF}_6)_3$ , 5MeCN. The solids are formulated as  $\text{Tl}^{\text{I}}$ ,  $\text{Tl}^{\text{III}}$  mixtures with  $\text{MoF}_6^-$  as counter ion. Although their composition is variable, the atomic ratio Tl : Mo is always near 1 : 2. UF<sub>6</sub> shows similar behaviour, and to ensure the preparation of pure TI hexafluorouranate(V) [9], the UF<sub>6</sub> concentration should be at least 1 mol  $dm^{-3}$ .

The vibrational spectrum of T1<sup>III</sup> (MoF<sub>6</sub>), SMeCN contains bands due to coordinated MeCN, 2322 v(CN), 2293 comb., 950 v(CC), and 390 cm<sup>-1</sup>  $\delta$ (CCN), and to  $MoF_6^-$ , 675 pol.  $(v_1)$ , 640  $(v_2)$ , and 250 cm<sup>-1</sup>  $(v_4)$ . Its electronic spectrum in MeCN consists of two weak bands,  $v_{max} = 33,600, 30,800 (sh) \text{ cm}^{-1}$ , analogous to bands at 34,500 and 30,300 cm<sup>-1</sup> in Cu<sup>I</sup> hexafluoromolybdate(V). The bands are in reasonable agreement with two of those reported for solid CsMoF<sub>c</sub> [19], but assignments are not possible.

 $Cu^{I}$  hexafluorotungstate(V), assignments are not possible. TI<sup>III</sup>(MoF<sub>6</sub>)<sub>3</sub>, 5MeCN oxidizes Cu<sup>I</sup> to Cu<sup>II</sup> in MeCN at 298 K, although the reaction is not complete. In reactions for which [Cu<sup>I</sup>] and [T1<sup>III</sup>] were initially 0.040 and 0.019 - 0.032 mol  $dm^{-3}$  respectively, the final  $[Cu^{II}]$  is 60-78% of that expected for the stoicheiometry,  $Tl^{III}$  :  $Cu^{I}$  = 1:2. Cu<sup>I</sup> is also oxidized by the yellow Tl<sup>III</sup>, Tl<sup>I</sup> solid in MeCN. Thallium(I), as the  $PF_6$ , salt, does not appear to be oxidized by WF, Cu<sup>II</sup>, or NO<sup>+</sup> in MeCN at 298 K.

The reactions of  $Tl^{III}$  and  $Tl^{I}$  in MeCN imply that the  $Tl^{III}_{Tl}$ couple is less oxidizing than is  $MoF_6/MoF_6$  but more so than is  $Cu^{II}/Cu^{I}$ . A high concentration of  $MoF_6$  is required to achieve complete oxidation to  $Tl^{III}$  at ambient temperature, indicating a kinetic barrier to be overcome in the two electron transfer process. The synthetic results are at variance with those obtained from cyclic voltammetry, however, the latter are indeterminant.

### EXPERIMENTAL

Standard vacuum and glove box techniques were used throughout. Reagent purification and the procedures for spectroscopic studies and cyclic voltammetry (except where described above) were as previously described [10, 11, 13]. Solvated metal cation hexafluorometallates (V) and heptafluorotungstates (VI) were prepared by literature methods [9, 13, 15, 20] or by simple extensions thereof. The salts were characterized by their spectra and in some cases analysis, metals being determined by atomic absorption spectroscopy, nitrogen by the Kjeldahl method, and other microanalyses by Malissa and Reuter, F.R.G. Their vibrational spectra, except for Tl<sup>I</sup> salts, contained bands characteristic of coordinated MeCN and the appropriate anion. Bands due to co-ordinated  $H_2^0$  and metal-oxygen moieties were absent. Cu<sup>II</sup> salts showed the d-d band due to distorted octahedral Cu(NCMe) $_6^{2+}$  at 740 nm in their electronic spectra. The molar extinction coefficient, ξ, was determined as 28 mol<sup>-1</sup> dm<sup>3</sup> cm<sup>-1</sup> in the  $PF_{c}^{-}$  salt, and this was used to determine [Cu<sup>II</sup>] in spectrophotometric titrations. Solutions for these were prepared using a microburette in a glove box or in vacuo, with the solutes contained in frangible ampoules.

Analytical data were as follows: Found Cu, 9.2; Mo, 28.0. Cu  $(MOF_6)_2$ , 5MeCN req. Cu, 9.2; Mo, 27.9%. Found Cu, 14.4; Mo.22.6, Cu  $(MOF_6)$ , 4MeCN req. Cu, 14.5; Mo, 22.4% Found Cu, 6.9; N, 7.1. Cu  $(WF_7)_2$ , 5MeCN req. Cu, 7.0; N, 7.8%. Found C, 11.7; H, 1.4; F, 32.8; N, 6.9; Mo, 27.5; Tl, 19.8. Tl<sup>III</sup>  $(MOF_6)_3$ , 5MeCN req. C, 11.6; H, 1.4; F, 32.9; N, 6.7; Mo, 27.7; Tl, 19.7%.

314

A mixture of dried tetra-<u>n</u>-butylammonium iodide (0.95 mmol) and  $WF_6$  (5.50 mmol) in MeCN (5 ml) was allowed to react at room temperature. Iodine was immediately produced and was removed with other volatile material by vacuum sublimation. The residue, washed four times with MeCN to remove trace I<sub>2</sub>, was a pale cream solid. Its vibrational spectrum contained strong bands at 705 (Raman) and 630 cm<sup>-1</sup> (i.r.) due to  $WF_6$ .

T1 metal (<u>ca</u> 2mmol) was allowed to react with UF<sub>6</sub> (<u>ca</u>. 10 mmol) in MeCN (5 ml) at room temperature for 15 min. after which time all the metal had reacted. Removal of solvent and unchanged UF<sub>6</sub> left a pale green solid. Found C, 6.6; H, 0.7; F, 23.75; N, 3.8; T1, 14.2; U, 50.4. T1(UF<sub>6</sub>)<sub>3</sub>, 4MeCN req. C, 6.7; H, 0.8; F, 24.0; N, 3.9; T1, 14.35; U, 50.1%. A reaction employing a similar quantity of UF<sub>6</sub> but a larger quantity of T1 metal, which did not all react, gave a solid whose analysis was identical, but if a significantly smaller quantity of UF<sub>6</sub> was used, the solid's analysis was C, 8.75; H, 1.1; F, 21.1; N, 5.1; T1, 18.8; U, 44.5. T1(UF<sub>6</sub>)<sub>2</sub>, 4MeCN req. C, 8.95; H, 1.1; F, 21.25; N, 5.2; T1, 19.1; U, 44.4%. The three solids were identical spectroscopically to T1<sup>III</sup>(UF<sub>6</sub>), 5MeCN reported earlier [9].

A mixture of thallium(I) fluoride (4.7 mmol),  $PF_5$  (4.4 mmol) and MeCN (5 ml), allowed to react at room temperature, gave initially a yellow solution which became colourless on shaking for several hours. A colourless solid was isolated, identified as TlPF<sub>6</sub> from its analysis (Found F, 32.2; P, 8.6; Tl, 58.4. TlPF<sub>6</sub> req. F, 32.6; P, 8.6; Tl, 58.5%) and spectra. Raman:  $v_{max} = 742(v_1)$ ,  $470(v_5)$  cm<sup>-1</sup>; i.r.:  $v_{max} = 830(v_3)$ ,  $560(v_4)$  cm<sup>-1</sup>;  $^{19}$ F n.m.r.:  $\delta$ -73 p.p.m. w.r.t. CCl<sub>2</sub>F,  $^{1}J$  (PF) 707 Hz.

# CONCLUSION

From a combination of cyclic voltammetry and redox chemistry the order of oxidizing ability in MeCN at 298 K is established as  $\text{UF}_6 > \text{MoF}_6$ > solvated NO<sup>+</sup> > solvated Cu<sup>2+</sup>  $\gg$  WF<sub>6</sub>. Solvated T1<sup>3+</sup> lies probably between MoF<sub>6</sub> and Cu<sup>2+</sup>. The redox reactions alone do not differentiate between UF<sub>6</sub> and MoF<sub>6</sub>, but the chemical behaviour of WF<sub>6</sub> is clearly differentiated, both by its weaker oxidizing power and by its ability to participate in F<sup>-</sup> ion transfer equilibria.

# ACKNOWLEDGEMENTS

We thank Mr. J. Connolly for building the cyclic voltammetry cell, British Nuclear Fuels, PLC for a gift of  $UF_6$ , and the Government of Pakistan, the SED and the SERC for financial support.

## REFERENCES

- J.L. Beauchamp, J. Chem. Phys., <u>64</u> (1976) 929; P.M. George and J.L. Beauchamp, Chem. Phys., <u>36</u> (1979) 345.
- B.K. Annis and S. Datz, J. Chem. Phys., <u>66</u> (1977) 4468; R.N. Compton,
   P.W. Reinhardt, and C.D. Cooper, ibid., 68 (1978) 2023.
- 3 J. Burgess, I. Haigh, R.D. Peacock, and P. Taylor, J.Chem. Soc., Dalton Trans., (1974) 1064; J. Burgess and R.D. Peacock, J. Fluorine Chem., <u>10</u> (1977) 479.
- 4 L.N. Sidorov, A. Ya. Borshchevsky, E.B. Rudny, and V.D. Butsky, Chem. Phys., <u>71</u> (1982) 145; A.T. Pyatenko, A.V. Gusarov, and L.N. Gorokhov, Russ. J. Phys. Chem., 56 (1982) 1164.
- 5 P.R. Hammond, J. Phys. Chem., <u>74</u> (1970) <u>647</u>; P.R. Hammond and W.S. McEwan, J. Chem. Soc. (A), (1971) 3812; R.R. McLean, D.W.A. Sharp, and J.M. Winfield, J. Chem. Soc., Dalton Trans., (1972) 676; J.D. Webb and E.R. Bernstein, J. Am Chem. Soc., <u>100</u> (1978) 483.
- J.R. Geichman, E.A. Smith, S.S. Trond, and P.R. Ogle, Inorg. Chem.,
   <u>1</u> (1962) 661; T.A. O'Donnell and D.F. Stewart, <u>ibid.</u>, <u>5</u> (1966)
   1434; T.A. O'Donnell, D.F. Stewart, and P. Wilson, <u>ibid.</u>, <u>5</u> (1966)
   1438; N. Bartlett, Angew. Chem., Int. Ed. Engl., 7 (1968) 433.
- 7 A.M. Bond, I. Irvine, and T.A. O'Donnell, Inorg. Chem., <u>14</u> (1975) 2408; <u>ibid.</u>, 16 (1977) 841.
- G.A. Heath, G.T. Hefter, T.W. Boyle, C.D. Desjardins, and
  D.W.A. Sharp, J. Fluorine Chem., <u>11</u> (1978) 399; A.K. Sengupta,
  D.W.A. Sharp, G.A. Heath, and S Brownstein, <u>ibid.</u>, <u>21</u> (1982) 38,
  abs. I-72; S. Brownstein, G.A. Heath, A. Sengupta, and
  D.W.A. Sharp, J. Chem. Soc., Chem. Commun., (1983) 669.
- 9 A. Prescott, D.W. A. Sharp, and J.M. Winfield, J. Chem. Soc., Dalton Trans., (1975) 936; J.A. Berry, R.T. Poole, A. Prescott, D.W.A. Sharp, and J.M. Winfield, ibid., (1976) 272.
- 10 C.J. Barbour, J.H. Cameron, and J.M. Winfield, J. Chem. Soc., Dalton Trans., (1980) 2001.

- 11 G.M. Anderson, J.H. Cameron, A.G. Lappin, J.M. Winfield, and A. McAuley, Polyhedron, <u>1</u> (1982) 467.
- 12 B.J. Hathaway, D.G. Holah and J.D. Postlethwaite, J. Chem. Soc., (1961) 3215; B.J. Hathaway, D.G. Holah, and A.E. Underhill, ibid., (1962) 2444.
- 13 D.K. Sanyal, D.W.A. Sharp, and J.M. Winfield, J. Fluorine Chem., 19 (1981/82) 55.
- 14 A.G. Edwards and B.R. Steventon, J. Chem. Soc., Dalton Trans., (1977) 1860.
- 15 A. Prescott, D.W.A. Sharp, and J.M. Winfield, J. Chem. Soc., Dalton Trans., (1975) 934.
- 16 I.D. MacLeod, D. Millington, A. Prescott, and D.W.A. Sharp, Inorg. Nucl. Chem. Lett., <u>11</u> (1975) 447
- 17 G.B. Hargreaves and R.D. Peacock, J. Chem. Soc., (1957) 4212.
- 18 G.M. Anderson, I.F. Fraser, and J.M. Winfield, J. Fluorine Chem., 23 (1983) 403.
- 19 D.H. Brown, D.R. Russell, and D.W.A. Sharp, J. Chem. Soc., (A), (1966) 18.
- 20 A.C. Baxter, J.H. Cameron, A. McAuley, F.M. McLaren, and J.M. Winfield, J. Fluorine Chem., 10 (1977) 289.